BSc Thesis: Computer vision and deep learning for analysis of identification documents

Mr Filip Radinovic defended his BSc thesis “A system for analyzing identification documents by leveraging Computer vision and Deep Learning” under co-mentorhsip of mr Stevan Cakic and prof. Tomo Popovic. The thesis focuses on the importance of identity in our digital world and how it impacts the security measures used by organizations. The main goal of the thesis is to use artificial intelligence to verify a person’s identity online. The researchers trained a model using various datasets and images, teaching it to spot even the smallest inconsistencies. The most significant discovery they made is that this model is very accurate, with a precision rate of around 90%. Additionally, the model is very efficient, taking only 3 to 4 seconds to process data, which is much faster than manual methods. Overall, the thesis highlights the potential of using AI for identity verification, making it both precise and time-saving.

The thesis focused on the use of computer vision and HPC/AI to develop tools for ID document analysis

ABSTRACT – Identity is one of the most sacred values and currencies in our digital era, affecting the working models of private and public institutions. This causes many strict security measures and protocols with a price of time, which is where this thesis’ goal arises. The approach of the thesis is leveraging artificial intelligence to accomplish identity verification over the web. The model was trained on a myriad of datasets and images, utilizing standard deep learning algorithms. By the end of training, it was able to detect the most subtle inconsistencies, making it quite precise. The biggest research finding is the potential that a model like this holds. Its precision varies around 90%, which is a good number by today’s standards and model’s testing conditions and hardware. The other aspect is time, in which the model excels. From the point when the model receives the data, the processing of it begins and it takes 3 to 4 seconds (on modest hardware). This implies superior efficiency than manual or alternative ways of accomplishing the same goal.

Four BSc theses on Artificial Intelligence and applications

We are happy to report that 4 BSc theses were defended on 18.07.2023. that were relevant to AI applications. These theses were done under mentorship of HPC4S3ME and EUROCC team. This is all part of building scientific and innovation potential to utilize HPC and AI in different domains of S3 Smart Specialisation Strategy in Montenegro. This is a great exampe of NCC support and cross-project collaboration. More about HPC4S3ME project can be found at: link.

  • Ms Tamara Lasica: “Development of Generative AI (GenAI)” (link)
  • Ms Elda Kalac: “Artificial intelligence and big data analytics” (link)
  • Mr Nikola Kavaric: “Explainable Artificial Intelligence” (link)
  • Mr Elvis Taruh: “Artificial intelligence and video games” (link)
Ms. Tamara Lasica
Mr Elvis Taruh
Mr. Nikola Kavaric

Master thesis: Computer vision and AI in medicine

Mr Dejan Babic, a young researcher from UDG, just defended his Master thesis on the use of computer vision and artificial intelligence in medicine. This is a great example of using ICT for vertical priority domains of Monteengrin S3. This research was supported in part by HPC4S3ME project and EUROCC. Mr Babic intends to continue his research in this domain and to enroll PhD program at the UDG. Mr Babic explored the use of different tools for ML and he also experimened with the use of HPC for training prediction models that can be used in medicine. He was one of the first MSc theses defended from the Artificial Intelligence Master program created under the EuroCC project.

ABSTRACT – Artificial Intelligence is transforming the way we live, work, and communicate with the world. The proliferation of data has been the biggest driver of AI in recent years. AI in medicine is rapidly developing and holds great potential in revolutionizing healthcare systems. Its application is already producing promising results in disease detection, diagnosis and drug discovery. AI is widely used in medical facilities worldwide as a decision support tool for patient diagnosis. It is expected to bring significant benefits to healthcare sector. In this thesis, the focus is on the application of artificial intelligence and computer vision in solving real medical problems. The research is both theoretical and empirical and focuses on the application of artificial intelligence and computer vision in the detection of pneumonia, segmentation of blood vessels in the retina, and estimation of cardiovascular risk. The main goal of the research is to achieve the highest possible accuracy in specific cases and approaches, in order for these approaches to be considered applicable in medicine. Throughout the study, some of the ethical issues related to the use of this technology were also raised. At the end of the study, the results, potential challenges, and future directions of this research were discussed.

Computer vision and artificial intelligence in medicine
Segmentation of blood vessels in images of retina

Master thesis: The use of Artificial Intelligence on Edge

Mr Ivan Jovovic, a young researcher from UDG, just defended his Master thesis on the use of artificial intelligence and machine learining on edge devices. This research was supported in part by HPC4S3ME project and EUROCC. Mr Jovovic intends to continue his research in this domain and to enroll PhD program at the UDG. Mr Jovovic explored the use of different tools for ML and he also experimened with the use of HPC for training prediction models that can be ported onto edge devices. He was one of the first MSc theses defended from the Artificial Intelligence Master program created under EuroCC project.

ABSTRACT – This thesis explores the combination of artificial intelligence, machine learning, deep learning, and edge computing in modern applications, with a special focus on medicine and agriculture. The paper first introduces the reader to the basic terms and definitions of machine learning, deep learning, computer vision, the Internet of Things and Edge computing. After the theoretical basis, the work provides an insight into the practical applications of these technologies in medicine and agriculture, highlighting the benefits and drawbacks of their applications. In the following, the paper offers a detailed study of practical examples of edge artificial intelligence in agriculture and healthcare, as well as artificial intelligence in the field of medicine, with focus on disease classification. Through the realization and implementation of these projects, the interpretation of the results and the discussion, the paper emphasizes the importance of the integration of artificial intelligence and edge computing in various industries.

Master thesis: The use of Artificial Intelligence on Edge (Edge AI)

IT2023 and EuroCC2 featured in IEEE Region 8 News

Thanks to EuroCC2 team from Montenegro, EuroCC and 27th International Scientific and Professional Conference – Information technology IT2023 were featured in the June issue of IEEE Region 8 News magazine (Vol 4 No 2). You can access the full issue at the following link. The News bulletin is published quartterly and distributed to over 80000 IEEE members in Region 8.

EuroCC2 and IT2023 featured in IEEE Reggion8 News

AIMHiGH project featured in Success Story booklet by EUROCC

EuroCC has published their first booklet edition of Success Stories for 2023! The booklet contains a summary of successful experiments that have been conducted within the EuroCC projects with some of them using EuroHPC Joint Undertaking supercomputers Each success story includes its challenges, solutions, business impacts and benefits. Discover more on the newly published booklet! Project AIMHiGH, a HPC/AI use case for computer vision solutions in agri-food sector, was featured in this first bulletin. The booklet is available at the following link.

Project AIMHIGH featured in the Success Story bulletin
Click on image to open the report

A journal paper: Machine Learning Models for Statistical Analysis

Researchers from UDG and NCC Montenegro published a paper “Machine Learning Models for Statistical Analysis” by M. Grebovic et al. in The International Arab Journal of Information Technology, Vol. 20, No. 3A, Special Issue 2023. This was a follow up effort on the paper previously presented at the ACIT2023 conference.

Click on image to open

ABSTRACT – Compared to traditional statistical models, Machine Learning (ML) algorithms provide the ability to interpret, understand and summarize patterns and regularities in observed data for making predictions in an advanced and more sophisticated way. The main reasons for the advantage of ML methods in making predictions are a small number of significant predictors of the statistical models, which means limited informative capability, and pseudo-correct regular statistical patterns, used without previous understanding of the used data causality. Also, some ML methods, like Artificial Neural Networks, use non-linear algorithms, considering links and associations between parameters. On the other hand, statistical models use one-step-ahead linear processes to improve only short-term prediction accuracy by minimizing a cost function. Although designing an optimal ML model can be a very complex process, it can be used as a potential solution for making improved prediction models compared to statistical ones. However, ML models will not automatically improve prediction accuracy, so it is necessary to evaluate and analyze several statistical and ML methods, including some artificial neural networks, through accuracy measures for prediction purposes in various fields of applications. A couple of techniques for improving suggested ML methods and artificial neural networks are proposed to get better accuracy results.

The paper is available at the following link.