Master thesis: HPC/AI for breast cancer detection

Ms. Tamara Pavlovic defended her MSc thesis on the use of HPC/AI for creating prediction models for breast cancer detection on 23.10.2024. With the support from NCC Montenegro, Ms Pavlovic did her research in the context of the HPC4S3ME project and the focus was on AI and computer vision applications in medicine. From the motivational point of view, we congratulate Tamara for finalizing and defending her thesis during the Breast Cancer Awareness Month (‘Pink October’) as people around the world adopt the pink colour and display a pink ribbon to raise awareness about breast health.

ABSTRACT – Artificial Intelligence (AI) is revolutionizing numerous sectors, including medicine, by offering innovative methods for diagnosing, treating, and researching diseases. This master’s thesis focuses on the application of AI in the diagnosis of breast cancer, using computer vision algorithms to analyze mammographic images. Through a combination of convolutional neural networks (CNNs) and deep learning, models have been developed that identify malignant changes, potentially contributing to earlier and more precise disease detection. The thesis examines in detail how AI can improve the efficiency of screening processes, reduce the time required for diagnosis, and enable a more personalized approach to treatment. In addition to technological progress, ethical issues such as patient safety and the transparency of AI systems are also considered. The results of this study confirm that the application of AI in breast cancer diagnostics can significantly enhance medical procedures. The models tested, ResNet152 and DenseNet121, demonstrated quite good performance in classifying breast cancer. Their AUC scores, which exceed the threshold of 0.9, indicate their potential for use in clinical practice. These findings not only contribute to the improvement of diagnostic processes but also open up opportunities for further research and development of AI technologies in medicine.

This research was done in th context of HPC4S3ME and with the support from EUROCC NCC Montenegro
Ms Pavlovic finalized her thesis during the Breast Cancer Awareness Month (‘Pink October’)

Master thesis: HPC/AI in precision agriculture

Mr Mato Martinovic defended his MSc thesis on 23 octiber 2024. His research focused on detecting plant deseases for applications in vineyards. He was experimenting with HPC/AI and computer vision. He is one of the latest graduates from the AI master program created under EUROCC project and his mentoring was done with the support of EUROCC NCC Montenegro.

ABSTRACT – This research analyzes the use of computer vision in the field of viticulture. The thesis describes problems in viticulture, computer vision and its use in this field. The paper analyzed the performance of ResNet50, VGG16 and MobileNet models in the classification of diseases and grapevine species. The models achieved accuracy of 98.67%, 97.28%, and 98.72% on the original test data set, while on the extended one, they achieved 87.47%, 72.07%, and 86.64%, respectively, when classifying diseases. In species classification, the models achieved accuracies of 70%, 78% and 88% on the original test data set, and 66%, 51% and 72% on the extended one, respectively. The VGG-16 model had the largest difference in accuracy over extended data, while ResNet had the smallest decrease in accuracy in both cases, which implies that ResNet generalizes the data better. The paper presents the process of creating a platform that allows users to post an image and receive a prediction value through a mobile application.

HPC/AI and computer vision for applications in smart viticulture

Master thesis: AI/ML and applications in medicine

Mr. Luka Jeremic defended his MSc thesis on 23 October 2024. The title of the thesis was AI and applications in medicine. His research was mentored by HPC4S3ME team members and it was done in the context of AI master program at the Faculty for information systems and technologie at UDG. This program and Master students are supporter by EUROCC NCC Montenegro.

ABSTRACT – This research explores the application of artificial intelligence in medicine, with a focus on the classification of brain, liver, and blood cell diseases. The main objective is to evaluate the effectiveness of algorithms in recognizing and classifying diseases of these organs. Through the development of a prototype information system, the study analyzes how artificial intelligence can improve diagnostics and contribute to the advancement of personalized medicine. The methodology includes a literature review, the development of computer vision models, and the assessment of model accuracy using real medical data. The results show that models based on deep neural networks can enhance the accuracy and speed of diagnostics, allowing for more precise disease classification. The paper also highlights the barriers and challenges in implementing these technologies,
including the need for ethical considerations and training of medical staff. The conclusions suggest that this approach has the potential to significantly improve medicine, but further research and refinement are necessary.

Mr Jeremic defended his master thesis on AI/ML and applications in medicine

Master thesis: Deep learning in energy sector

Ms. Zoja Scekic, a young researcher on HPC4S3ME project, defended her MSc thesis “Deep learning and applications in energy sector” today. This is one of the main project outputs in capacity building aimed at HPC/AI skills for applications in priority domains of Montenegrin S3.

ABSTRACT – This master’s thesis explores the application of advanced deep learning models for predicting day-ahead electricity prices, focusing on the accuracy and efficiency of these models compared to traditional forecasting methods. With the increasing integration of renewable energy sources and the growing complexity of electricity markets, accurate price forecasting has become crucial for market participants, grid operators, and policymakers. The research is structured around four case studies, each employing different deep learning techniques, such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and hybrid models like CNN-LSTM. Despite the promising results, the research recognizes limitations related to data quality, model complexity, and computational resource requirements. The study emphasizes the need for further research into optimizing model efficiency, integrating more diverse data sources, and expanding the applicability of these models to different energy markets.

Ms Zoja Scekic defended her MSc thesis on Deep leaning applications in energy sector
This MSc thesis was done in the context of HPC4S3ME with support from EUROCC NCC Montenegro

BSc thesis: Quadruped robot with integrated self-balancing and AI capabilities.

Mr Igor Culafic, a student at the Faculty of applied sciences, defended his BSc thesis titled “Quadruped robot with integrated self-balancing and AI capabilities”. Igor received support from UDG to build the robot and implement experimenting with AI and ML for this robot platform.

ABSTRACT – This paper presents the development of a quadruped robot equipped with artificial intelligence (AI) capabilities for mapping the environment and adapting to various terrains and surfaces for movement. The project is inspired by the Spot Robot Dog project by the Boston Dynamics team, utilizing one of the versions of the open-source project known as Spot Micro, specifically using the branch project named Nova SM3. The complexity of this endeavour lies in the integration of electronics, robotics, and artificial intelligence, requiring expertise in AI model training, soldering, 3D printing, programming, and robotics. This multidisciplinary initiative represents a synthesis of knowledge acquired during studies at the Faculty of Electrical Engineering and Computing of the University of Donja Gorica, serving as a comprehensive demonstration of applied engineering skills and an innovative approach to robotics.

A BSc thesis at Faculty for applied sciences
The use of 3D printing, electronics, robotics, and AI model training
Model training and evaluation in the simulator

BSc thesis: Hotel chatbot receptionist for smart hospitality

Ms. Sara Kovacevic defended her BSc thesis on the use of AI tools to create a hotel chat bot receptionis for smart hospiality. This research was doen in the context of HPC4S3ME with the support from NCC Montengro an HPC4S3ME. The results were pulished at the IEEE IT2024 conference. The future work will include experimenting with HPC to run different AI tools and models. Her fefence took place on 3 October 2024.

ABSTRACT – The aim of this thesis is to examine the advancements and applications of chatbots in hotels to enhance customer experience and operational efficiency in Montenegro, which aspires to become a prestigious tourist destination. Emphasis is placed on the use of artificial intelligence (AI), machine learning (ML), and high-performance computing (HPC) to develop advanced digital solutions. The automation of guest communication through chatbots reduces the burden on staff and increases customer satisfaction, especially during the tourist season when there are significant fluctuations in the number of visitors. The research analyzes key aspects of implementing chatbot technology, including the challenges and benefits of using the Voiceflow platform for development and testing. It studies data on guest preferences and service personalization, contributing to a better understanding of user needs and tailoring hotel offerings to meet their expectations. The thesis advises further optimization of chatbot functionalities, staff training, and regular collection of guest feedback. These recommendations enable Montenegrin hotels to improve their offerings and stand out in the global market competition. This work represents an important contribution to the advancement of digital solutions in Montenegro and can serve as a starting point for future research.

Ms. Sara Kovacevic defended her BSc thesis on AI powered hotel chatbot receptionist

BSc thesis on computer vision and machine learning for sign language

Mr. Igor Radulovic defended his BSc thesis on computer vision and machine learning for creating a prediction model for sign language. The defence took place on 3 October at UDG. This effort was inspired by the AI4S3 course and was supported by mentors from NCC Montenegro and HPC4S3ME team.

ABSTRACT – This thesis explores the use of advanced computer vision and machine learning techniques to develop a system that enables the translation of sign language into speech or written text in real time. The project aims to facilitate the communication of deaf-mute people with people who do not know sign language, in order to overcome language barriers and improve the social status of deaf-mute people in society. Using technologies such as Google Colab, Python, Roboflow, VS Code and Detectron2, a system was developed that recognizes various American Sign Language (ASL) gestures and converts them into understandable information. The system is based on deep neural networks and processes such as model training and instance segmentation, in order to achieve a high level of accuracy and reliability. Through the evaluation of the results, an impressive performance of the model was achieved with an F1 result of 95.6%, while the challenges in the technical limitations remained an important point of future development. This work points to the significant social impact of the application of computer vision in the communication of deaf and mute people, enabling them to integrate and be present in modern society.

Computer vision and machinle learning for sign language