BSc thesis: Quadruped robot with integrated self-balancing and AI capabilities.

Mr Igor Culafic, a student at the Faculty of applied sciences, defended his BSc thesis titled “Quadruped robot with integrated self-balancing and AI capabilities”. Igor received support from UDG to build the robot and implement experimenting with AI and ML for this robot platform.

ABSTRACT – This paper presents the development of a quadruped robot equipped with artificial intelligence (AI) capabilities for mapping the environment and adapting to various terrains and surfaces for movement. The project is inspired by the Spot Robot Dog project by the Boston Dynamics team, utilizing one of the versions of the open-source project known as Spot Micro, specifically using the branch project named Nova SM3. The complexity of this endeavour lies in the integration of electronics, robotics, and artificial intelligence, requiring expertise in AI model training, soldering, 3D printing, programming, and robotics. This multidisciplinary initiative represents a synthesis of knowledge acquired during studies at the Faculty of Electrical Engineering and Computing of the University of Donja Gorica, serving as a comprehensive demonstration of applied engineering skills and an innovative approach to robotics.

A BSc thesis at Faculty for applied sciences
The use of 3D printing, electronics, robotics, and AI model training
Model training and evaluation in the simulator

BSc thesis: Hotel chatbot receptionist for smart hospitality

Ms. Sara Kovacevic defended her BSc thesis on the use of AI tools to create a hotel chat bot receptionis for smart hospiality. This research was doen in the context of HPC4S3ME with the support from NCC Montengro an HPC4S3ME. The results were pulished at the IEEE IT2024 conference. The future work will include experimenting with HPC to run different AI tools and models. Her fefence took place on 3 October 2024.

ABSTRACT – The aim of this thesis is to examine the advancements and applications of chatbots in hotels to enhance customer experience and operational efficiency in Montenegro, which aspires to become a prestigious tourist destination. Emphasis is placed on the use of artificial intelligence (AI), machine learning (ML), and high-performance computing (HPC) to develop advanced digital solutions. The automation of guest communication through chatbots reduces the burden on staff and increases customer satisfaction, especially during the tourist season when there are significant fluctuations in the number of visitors. The research analyzes key aspects of implementing chatbot technology, including the challenges and benefits of using the Voiceflow platform for development and testing. It studies data on guest preferences and service personalization, contributing to a better understanding of user needs and tailoring hotel offerings to meet their expectations. The thesis advises further optimization of chatbot functionalities, staff training, and regular collection of guest feedback. These recommendations enable Montenegrin hotels to improve their offerings and stand out in the global market competition. This work represents an important contribution to the advancement of digital solutions in Montenegro and can serve as a starting point for future research.

Ms. Sara Kovacevic defended her BSc thesis on AI powered hotel chatbot receptionist

BSc thesis on computer vision and machine learning for sign language

Mr. Igor Radulovic defended his BSc thesis on computer vision and machine learning for creating a prediction model for sign language. The defence took place on 3 October at UDG. This effort was inspired by the AI4S3 course and was supported by mentors from NCC Montenegro and HPC4S3ME team.

ABSTRACT – This thesis explores the use of advanced computer vision and machine learning techniques to develop a system that enables the translation of sign language into speech or written text in real time. The project aims to facilitate the communication of deaf-mute people with people who do not know sign language, in order to overcome language barriers and improve the social status of deaf-mute people in society. Using technologies such as Google Colab, Python, Roboflow, VS Code and Detectron2, a system was developed that recognizes various American Sign Language (ASL) gestures and converts them into understandable information. The system is based on deep neural networks and processes such as model training and instance segmentation, in order to achieve a high level of accuracy and reliability. Through the evaluation of the results, an impressive performance of the model was achieved with an F1 result of 95.6%, while the challenges in the technical limitations remained an important point of future development. This work points to the significant social impact of the application of computer vision in the communication of deaf and mute people, enabling them to integrate and be present in modern society.

Computer vision and machinle learning for sign language

BSc thesis: AI and machine learning for cultural heritage preservation

Ms. Jovana Mitric defended her BSc thesis at the Faculty for information sciences and technologies on 3 October, 2024. The topoc was on AI and machine learning for applications in cultural heritage preservation. This research was done in the context of HPC4S3ME project and was supported by the NCC Montenegro team. The future work will explore the use of HPC and expanded datasets to refine and train better models for monuments detection and providing support for Montenegrin tourism development. This work was also successfully presented at the IEEE IT2024 conference.

ABSTRACT – This thesis presents research on artificial intelligence (AI) and machine learning (ML), and their potential application in the preservation of cultural heritage, with a special focus on Montenegro. Computer vision, as a specific field of artificial intelligence, was explored. The paper addresses the implementation of modern technologies, specifically computer vision, in the field of cultural tourism to enhance the visibility and preservation of cultural monuments. By using available tools such as the Roboflow platform for image annotation and Google Colaboratory for model training, a web application was developed using the Flask framework, which recognizes cultural
monuments based on images, powered by the YOLO v8 model. Additionally, the thesis discusses the broader context of AI applications in the preservation of cultural heritage and its promotion for tourism purposes, with particular emphasis on the potential for technological enhancement of Montenegro’s tourism offerings. The importance of digital transformation in tourism for Montenegro and its positioning in the global tourism market is highlighted.

Ms Jovan Mitric defended her BSc thesis on AI and machine learning in ultural heritage preservation

BSc thesis: AI models for real estate pricing based on web scraped data

Mr Marko Lasice defended his BSc thesis on AI powered real estate pricing. The future work will include larger datasets and explorig the use of HPC and AI to train more precise price estimation models. The work was supported by the NCC Montenegro and HPC4S3ME team members.

ABSTRACT – The development of generative models and exponential progress in artificial intelligence have opened up new application possibilities in many areas of economic life. One of the possibilities is developing an AI model for predicting market prices based on data extracted from the web. This paper introduces the reader to the technique of automated downloading and grouping of data from the web, known as web scraping, and the development of a predictive model that, based on the collected data, would predict real estate prices. The paper presents the practical part of the work, the implementation of a predictive model developed using the decision tree technique. In conclusion, the work contributes to the understanding of how the combination of these techniques improves decision-making processes in the real estate market.

Mr Marko Lasice defended his BSc thesis on AI powered real estate pricing

BSc thesis on prompt engineering

Mr. Veselin Andric defended his BSc thesis titleld “Prompt endineering for LLMs” at the Faculty for information systems and technologies. The devence took place on 2 Oct 2024 and it was done under mentorship of the EuroCC (NCC Montenegro) and HPC4S3ME teams’ members. This was a part of the effort to promote HPC and AI related technologies in the teaching curricula and research activities at UDG.

ABSTRACT – Prompt engineering is one of the primary areas of Natural language processing (NLP). It is a process that involves designing and improving inputs that are given to a language model such as ChatGPT, with a goal of getting wanted results. This dissertation investigates details of prompt engineering, it’s theoretical foundation, methodologies and practical uses in different tasks of NLP.

Mr. Veselin Andric defended his BSc thesis on Prompt Engineering
The provided an overview of NLP, LLMs and prompt techniques

HPC in Europe Podcast

Welcome to “Supercomputing in Europe” podcast from the EuroCC and Centre of Excellence network where we will talk about all things supercomputers.

Listen to stories by guests from all around Europe who talk about their work and give us interesting insights on the role of supercomputers in multiple fields such as life science, machine learning, engineering, data science, quantum computing, and more.

In the first episode, listen to EuroHPC Joint Undertaking (EuroHPC JU) executive director Anders Dam Jensen discuss with communication specialist Apostolos Vasileiadis (ENCCS, RISE Research Institutes of Sweden) about EuroHPC JU and the state of supercomputing in Europe and its future.

In the second episode listen to Marta García-Gasulla and Filippo Mantovani from Barcelona Supercomputing Center discuss with Sally Kiebdaj (Center of Excellence in Exascale CFD, HLRS – High-Performance Computing Center Stuttgart) about the European Processor Initiative and CEEC CoE.

Spotify: https://lnkd.in/dSHmk2Kx
Apple podcasts: https://lnkd.in/dyuBMFyM