Rad o otkrivanju raka dojke pomoću vještačke inteligencije i dubokog učenja na IT2025

Na IEEE IT2025 konferenciji na Žabljaku, istraživači sa Univerziteta Donja Gorica predstavili su svoje najnovije istraživanje o primjeni vještačke inteligencije (AI) u dijagnostici raka dojke. Istraživanje se bavi upotrebom modela dubokog učenja, ResNet152 i DenseNet121, za analizu mamografskih snimaka. Pored kliničkih rezultata, studija naglašava značaj korišćenja računarske infrastrukture visokih performansi (HPC) za optimizaciju obuke i evaluacije modela. Prenošenjem eksperimentalne postavke na HPC resurse, otvaraju se putevi za brže razvojne cikluse, istraživanje složenijih arhitektura i skalabilnost za primjenu u stvarnim uslovima.

Abstrakt – Vještačka inteligencija brzo unapređuje medicinu pružajući inovativne pristupe dijagnostici bolesti, tretmanu i istraživanju. Ova studija istražuje primjenu vještačke inteligencije u dijagnostici raka dojke, fokusirajući se na upotrebu konvolutivnih neuronskih mreža i dubokog učenja za analizu mamografskih snimaka. Modeli ResNet152 i DenseNet121 korišćeni su za klasifikaciju malignih promjena, pri čemu su ostvareni AUC rezultati veći od 0.9, što potvrđuje njihovu kliničku korisnost. Istraživanje ističe kako vještačka inteligencija može poboljšati efikasnost skrininga, ubrzati dijagnostičke procese i omogućiti personalizovane pristupe liječenju. Takođe su analizirani etički aspekti, uključujući bezbjednost pacijenata i transparentnost AI sistema. Nalazi ukazuju na potencijal vještačke inteligencije da transformiše dijagnostičke procedure za rak dojke i naglašavaju značaj daljih istraživanja radi integracije ovih tehnologija u kliničku praksu.